دوره 6، شماره 2 - ( 2-1400 )                   جلد 6 شماره 2 صفحات 136-127 | برگشت به فهرست نسخه ها


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shojaei M, Eshaghi M, Nateghi L. Investigation of Nano-Biocomposite for Kashar Cheese and Ground Meat Packaging. JNFS 2021; 6 (2) :127-136
URL: http://jnfs.ssu.ac.ir/article-1-349-fa.html
Investigation of Nano-Biocomposite for Kashar Cheese and Ground Meat Packaging. Journal of Nutrition and Food Security. 1400; 6 (2) :127-136

URL: http://jnfs.ssu.ac.ir/article-1-349-fa.html


چکیده:   (1815 مشاهده)
 Background: Plastic and polymeric materials remain in the soil given the fact that they are derived from petroleum resources. However, such pollution has created a special challenge for human societies. The use of biodegradable packaging has received more attention. The general purpose of this study was to investigate the use of a mixture film of whey protein concentrate and reinforced hydroxypropyl methylcellulose with chitosan nanoparticles to package ground meat and Kashar cheese. Furthermore, this package was compared with ordinary polyethylene coating. Methods: Two samples of ground meat and Kashar cheese were packaged using a nano-biocomposite film of whey protein concentrate/ hydroxypropyl methylcellulose (70:30) containing 3% chitosan nanoparticles. The antimicrobial properties of the optimal produced film were examined. The total population of microorganisms and pH for ground meat were tested during 6 days of storage. The total population of microorganisms, weight loss, moisture content, pH, and mold count and yeast for Kashar cheese were examined during 2 months of storage. The results of the tests were analyzed by Duncan one-way analysis of variance with 95% confidence and 5% error by Minitab16 software. Results: Samples of ground meat and cheese packaged in whey protein film and hydroxypropyl methylcellulose containing chitosan nanoparticles had less mold count, yeast, and total microorganism population than polyethylene packaging (P ≤ 0.05) after storage period. Conclusion: The use of biodegradable films based on plants and the loading of nanoparticles can lead to the use of this type of packaging for perishable food to prevent environmental hazards in addition to greater safety of perishable food products.
     

دریافت: 1399/6/21 | انتشار: 1400/2/21 | انتشار الکترونیک: 1400/2/21

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Nutrition and Food Security

Designed & Developed by : Yektaweb