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ARTICLE INFO 
 

ABSTRACT 

ORIGINAL ARTICLE Background: Diabetes mellitus (DM) is a metabolic syndrome and a major 

cause of global mortality rate and concern to health sector. Exploring 

therapeutic properties of natural plant has attracted array of interests in 

managing this challenge. This study, therefore, aimed to explore the 

antihyperglycemic effects of leaf extracts from Artocarpus heterophyllus (A. 

heterophyllus) in high sucrose diet-treated Drosophila melanogaster (D. 

melanogaster). Methods: Flies were divided into two groups of 50 flies (both 

sexes), i.e., i. Survival tests: with high sucrose diet; aqueous extract of A. 

heterophyllus (AEAH); ethanolic extract of A. heterophyllus (EEAH); and ii. 

Treatment groups: with AEAH, EEAH, and 30% sucrose diet. Results: The 

results showed that there was a significant (P<0.05) increase in mortality rate, 

glucose and oxidative biomarkers such as H2O2, nitrite with a significant 

(P<0.05) decrease in locomotion (negative geotaxis), glutathione peroxidase 

(GPx), catalase (CAT), and superoxide dismutase (SOD) activities, as well as 

total thiol and GSH levels among the high-sucrose diet-treated group compared 

to normal flies. However, Treatment with AEAH and EEAH resulted in a 

significant reduction (P<0.05) in mortality rates, glucose levels, and oxidative 

biomarkers. Additionally, there was a notable increase (P<0.05) in locomotion, 

as well as in the activities of GPx, CAT, and SOD. This was accompanied by a 

rise in total thiol and GSH levels when compared to normal flies. Conclusion: 

Extracts of A. heterophyllus caused a reduction in mortality and enhanced 

locomotion in D. melanogaster possibly by amelioration of antioxidant 

imbalance and hyperglycemia. 
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Introduction  

iabetes mellitus (DM) is a metabolic disorder 

characterized by chronic hyperglycemia due 

to impaired insulin secretion, activity, or both (Bai 

et al., 2018, Skyler, 2004). This persistent high 

blood sugar disrupts glucose homeostasis, 

contributing to obesity and other metabolic 
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diseases (Chukwunonso Obi et al., 2016, Khan and 

Sievenpiper, 2016). It also affects lipid and protein 

metabolism, often leading to complications such as 

peripheral neuropathy, retinopathy, and coronary 

heart diseases (Omoboyowa et al., 2018, 

Omoboyowa et al., 2021).  

Studies have indicated that chronic 

hyperglycemia promotes glucose autoxidation and 

protein glycosylation, resulting in oxidative 

damage through excessive reactive oxygen species 

(ROS) production and depletion of antioxidant 

defences (González et al., 2023, Papachristoforou 

et al., 2020). Oxidative stress has been identified 

as a key factor in the pathogenic effects of diabetes 

(Giacco and Brownlee, 2010, Matschke et al., 

2019). While the precise mechanisms behind the 

long-term complications of diabetes remain 

unclear, evidence suggests that oxidative stress 

plays a significant role in hyperglycemia and its 

related complications (Forbes et al., 2008, Negre-

Salvayre et al., 2009). Consequently, regulating 

ROS generation is critical in managing diabetes 

and preventing its complications.  

Drosophila is an established valuable model to 

study numerous human diseases (Grotewiel et al., 

2005). Diabetic D. melanogaster model has been 

reported as an ideal experimental paradigm for 

investigating DM (Bai et al., 2018). Glucose-

metabolizing genes, in particular, are largely 

conserved across humans and D. melanogaster 

(Graham and Pick, 2017). Due to the improved 

tolerance of chemicals from organic sources by the 

human body, the World Health Organization 

(WHO) has consistently endorsed research on 

utilizing molecules from natural sources for the 

management of chronic illnesses such as DM 

(Tahraoui et al., 2007, Tilburt and Kaptchuk, 2008). 

Artocarpus heterophyllus (A. heterophyllus), 

commonly known as Jackfruit, belongs to the 

Moraceae family and is a species of tree 

indigenous to the Western Ghats of India and 

Indonesia. Additionally, it can be found in various 

regions, including several Pacific Islands, Florida, 

Brazil, Southeast Asia, central and eastern Africa 

(Shanmugapriya et al., 2011). A report highlights 

that this medicinal plant is a rich source of 

carbohydrates, minerals, carboxylic acids, dietary 

fiber, flavonoids, and vitamins such as thiamine 

and ascorbic acid (Wei et al., 2005). In Africa, 

traditional medicine has long utilized different 

species of Artocarpus in treating various health 

conditions, including skin diseases, diarrhea, 

dysentery, stomach aches, ulcers, and 

inflammation (Adisa et al., 2004). A. 

heterophyllous has been reported to possess 

antibacterial, anti-diabetic, anti-inflammatory, 

antioxidant, and anti-helmintic properties 

(Soeksmanto et al., 2007). Majority of these 

studies have linked different properties of A. 

heterophyllous extracts to their high flavonoid 

contents using different models (Omar et al., 

2011). However, anti-diabetic efficacy of solvent 

extracts of A. heterophyllus leaves in high sucrose 

diet-induced hyperglycaemic D. melanogaster 

model has not been investigated. Therefore, this 

study investigated antihyperglycemic effects of 

leaf extracts from A. heterophyllus in high sucrose 

diet-treated D. melanogaster by assessing 

longevity, glucose levels, oxidative biomarkers, 

and locomotor activities.  

Materials and Methods 

Materials  

Chemicals such as sucrose, ethanol, dipotassium 

hydrogen trihydrate, potassium dihydrogen 

phosphate, hydrogen peroxide, dithiobis (2 nitro 

benzoic acids), and sorbitol were procured from 

Sigma-Aldrich, Inc. (Saint Louis, MO, USA). All 

other reagents used in this study were of analytical 

grades and were prepared in all-glass apparatus 

with distilled water. Wild-type of D. Melanogaster 

flies (Harwich strain) were obtained from 

Drosophila research laboratory of the Department 

of Biochemistry, College of Medicine, University 

of Ibadan, Oyo State, Nigeria. 

Collection and authentication of plant sample 

The leaves of A. heterophyllus were bought 

from Adadia community Market in Uruan Local 

Government, Akwa Ibom State, Nigeria. A 

voucher specimen was deposited and authenticated 

by a taxonomist (Specimen No.: 2019800) at the 

herbarium of the Department of Plant Science and 
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Biotechnology, Ekiti State University, Ado-Ekiti, 

Nigeria. 

Preparation of plant extracts 

The plant leaves were rinsed and air dried to a 

constant weight for 14 days, and then powdered 

using an automated laboratory blender. The sample 

was weighed (150 g) and soaked in 1 litter of 

distilled water for 24 h with a continuous agitation. 

The sample was then concentrated using a rotary 

evaporator set to 40 °C after being filtered using 

filter paper and stored at 4 oC before use. Similarly, 

leaf powder (150 g) was extracted into 1 litter of 

95% ethanol by maceration for 72 h. The extract 

was also filtered using Whatman No 1 filter paper 

and the filtrate was concentrated, lyophilized and 

thereafter preserved for further use. For the 

preparation of the solution to be added to the fly 

diet, the resulting powder was reconstituted in 

water.  

Fruit flies treatment 

All flies were maintained at a constant 

temperature of 23±2 oC and relative humidity with 

a 12-hour light/dark clock cycle in vials containing 

corn meal. Young flies that were 2 to 3 days old 

were collected under mild ice anesthesia and 

placed into vials. The flies, 50 of each sex per vial, 

were transferred to new vials containing fresh food 

every three days to maintain consistent food 

quality. The flies were flipped into new vials (50 

flies in each (both sexes)) containing fresh feed 

every three days to ensure feed quality consistency.  

Experimental design and procedure 

The experimental study was divided into two 

groups as follows; (i) Survival test with 30 and 

60% sucrose-based diet; 0.1-1.0 mg/kg AEAH; and 

0.1-1.0 mg/kg EEAH, and (ii) Treatment groups 

with 0.1 mg/kg AEAH, 0.1 mg/kg EEAH, and 30% 

sucrose diet.  

Treatment with sucrose in wild-flies  

Treatment with sucrose for the induction of 

hyperglycemia-like effects in wild-flies was 

performed according to the method of Tennessen 

et al. with modifications. Briefly, sucrose (30% 

and 60% w/v) was incorporated into the regular fly 

diet (Tennessen et al., 2014). All other ingredients 

of the standard fly diet (1% w/v brewer's yeast, 2% 

sucrose, 1% w/v powdered milk, 1% w/v agar, and 

0.08% w/v nipagin) were kept constant. The 

glucose levels of flies homogenates were 

monitored according to the method of Palanker 

Musselman et al. (Palanker Musselman et al., 

2011). 

Survival/ longevity study  

Survival rate of flies in 30 and 60% sucrose-

treated diet and treatments with optimal doses of 

AEAH and EEAH were monitored using the 

method described by Abolaji et al. (Abolaji et al., 

2019). Mortality was observed in flies each day for 

the period of exposure (28 days). The survival rate 

was calculated and presented as percentage of 

living flies after each treatment as reported by 

Abolaji et al. (Abolaji et al., 2019).  

Treatment groupings of wild-type flies  

Five vials of 50 flies (n=50; both sexes) each 

were collected and divided into two groups of 

survival test and treatment groups are shown in 

Table 1. 

Measurement of locomotor performance 

(Negative geotaxis activity) 

The locomotor activities of flies were determined 

using negative geotaxis method as previously 

described by Adedara et al. (Adedara et al., 2016). 

Ten flies (both genders, five each) were 

immobilized under mild ice anesthesia and placed 

separately in labelled vertical glass columns (15 

cm x 1.5 cm). After recovering from ice exposure 

for 20 minutes, the flies were gently tapped to the 

bottom of the column. The number of flies that 

climbed up to the 6 cm mark within 6 seconds was 

recorded, along with the number that remained 

below the mark after this time. The scores (%) were 

expressed as the percentage of mean total (ΔT) of flies 

at the top to total number (T) of flies as shown below. 

This procedure was repeated three times with a 1-minut 

interval. 

Locomotor activity (%) = ΔT/T x 100 

Where; ΔT represents mean total of flies at the top; 

while T is total number of flies. 
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Table 1. Grouping 

 

1. Survival tests 

i. with high sucrose diet only: 

  Group 1: Normal wild-type flies; 

  Group 2: Wild-type flies treated with 30% Sucrose; 

  Group 3: Wild-type flies treated with 60% Sucrose. 

ii. With AEAH: 

  Group 1: Normal wild-type flies; 

  Group 2: Wild-type flies treated with 0.1 mg/kg 

AEAH; 

  Group 3: Wild-type flies treated with 0.5 mg/kg 

AEAH; 

  Group 4: Wild-type flies treated with 1 mg/kg 

AEAH. 

iii. With EEAH: 

Group 1: Normal wild-type flies; 

Group 2: Wild-type flies treated with 0.1 mg/kg 

EEAH; 

Group 3: Wild-type flies treated with 0.5 mg/kg 

EEAH; 

Group 4: Wild-type flies treated with 1 mg/kg 

EEAH. 

2. Treatment groups: 

  Group 1: Normal wild-type flies; 

  Group 2: Wild-type flies + 30% sucrose; 

  Group 3: Wild-type flies treated with 0.1 mg/kg 

AEAH + 30% sucrose; 

  Group 4: Wild-type flies treated with 0.1 mg/kg 

EEAH + 30% sucrose. 

AEAH: Aqueous extract of A. heterophyllus; EEAH: 

Ethanolic extract of A. heterophyllus; Note: All the 

experiments lasted for twenty-eight days (28 days). 

Preparation of flies tissues for biochemical 

assays 

Flies homogenization: After anaesthesia, flies 

were collected, weighed, and homogenized in 0.1 

M phosphate buffer (pH 7.4, 1:10 w/v). The 

homogenate was centrifuged at 4000 rpm (using 

Mikro 220R centrifuge) at 40 °C for 10 min. The 

supernatant was then separated into labelled 

Eppendorf tubes while the pellet was discarded. 

The sample was kept in the refrigerator for 

biochemical assays. 

Biochemical analyses: Biochemical parameters, 

such as total thiol, were measured using the 

method of Ellman (Ellman et al., 1961), reduced 

glutathione levels by the method of Jollow et al. 

(Jollow et al., 1974), glutathione-S-transferase 

(GST) activity by the method of Habig and Jakoby 

(Habig and Jakoby, 1981), catalase (CAT) activity 

by the method of Claiborne (Claiborne, 1985), and 

hydrogen peroxide level using the method 

described by Wolff (Wolff, 1994). Nitric oxide 

(NO) level was determined as previously reported 

by Moncada et al. (Moncada, 1992) and glucose 

level was determined according to the method of 

Palanker Musselman et al. (Palanker Musselman et 

al., 2011). 

Data analyses 

Data analyses were performed using one-way 

ANOVA, followed by Tukey’s test for post-hoc 

analysis and graphical representation of results was 

performed using GraphPad Prism 8.5 version 

(GraphPad Software, San Diego, CA, USA). All 

values were expressed as mean±SE (n=6). 

Statistical differences were considered at P-value< 

0.05 (Zar, 1984). 

Results 

Survival test  

Effects of 30% and 60% sucrose-treated diets on 

survival/longevity in D. melanogaster: Figure 1 

represents the effects of 30% and 60% sucrose-

treated diets on survival/longevity of D. 

melanogaster. As shown in the result, 60% 

sucrose-treated flies revealed a significantly 

(P<0.05) high mortality rate before 28 days of the 

experimental study compared to the 30% sucrose 

treated group and normal control. 

 

Figure 1. Effect of 30% and 60% sucrose treatments on 

the survival and longevity in Drosophila melanogaster. 

Effects of 30% and 60% sucrose-treated diets on 

glucose levels, oxidative stress, and antioxidant 

parameters in D. melanogaster: Figure 2 (a-g) 

represents the effects of 30% and 60% sucrose-

treated diets on glucose levels, oxidative stress 

markers (such as H2O2 and nitrite levels), and 

antioxidant parameters (total thiol, GSH, GST and 
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CAT) in D. melanogaster. As indicated in the 

results, 30% and 60% sucrose treated groups 

showed a significant (P<0.05) increase in glucose 

(Figure 3a) and oxidative biomarkers such as 

H2O2 (Figure 2b) and nitrite (Figure 2c) levels 

with a significant decrease (P<0.05) in the levels 

of total thiol (Figure 2d) and GSH (Figure 2e), 

and activities of GST (Figure 2f) and CAT 

(Figure 2g) compared to the control flies. 

Similarly, a significant (P<0.05) difference was 

found only in glucose, H2O2, and GSH levels of 

the 30% sucrose treated flies compared to 60% 

sucrose treated flies. However, no significant 

(P>0.05) difference was indicated in the levels of 

nitrite and total thiol as well as GST and CAT 

activities in 30% sucrose treated compared to 

60% sucrose treated flies 
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Figure 2. (a-g): Effect of 30% and 60% sucrose treatments on glucose levels, xidative stress biomarkers, and 

antioxidant parameters in Drosophila melanogaster. Values are expressed as mean ± SE (n=50). * and ** indicate a 

significant (P<0.05) difference vs. control. 
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Effects of 30% and 60% sucrose-treated diets on 

locomotor (climbing) activity in D. melanogaster: 

Figure 3 represents the effects of 30% and 60% 

sucrose-treated diets on locomotor (climbing) 

activities of D. melanogaster. There was a 

significant (p<0.05) decrease in the climbing 

activity of 60% sucrose-treated flies compared to 

30% sucrose-treated group and control flies. 
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Effects of aqueous and ethanolic extracts of A. 

heterophyllus on survival of D. melanogaster: 

Figure 4 represents the effects of (a) AEAH-

treated (b) EEAH-treated diets on survival of D. 

melanogaster. As indicated in the result (Figure 

4a), the survival of flies in the presence of the 

AEAH was in a concentration-dependent manner. 

However, the survival rate significantly increased 

(P<0.05) among groups treated with 0.1–1.0 mg/kg 

AEAH compared to the control group. Similarly, 

as revealed in Figure 4b, the survival and 

longevity rate of flies treated with different doses 

(0.1, 0.5, and 1.0 mg/kg) of EEAH were 

favourable compared to basal diet. However, 0.1– 

1.0 mg/kg AEAH-treated flies revealed a 

significant (P<0.05) decrease moderately in flies 

survival compared to the control flies. 

Effects of aqueous and ethanolic extracts of A. 

heterophyllus on oxidative stress and antioxidant 

parameters in D. melanogaster: Figure 5 (a-f) 

represents the effect of AEAH-treated diet on 

oxidative stress markers (H2O2 and nitrite) and 

antioxidant parameters of Drosophila 

melanogaster. 
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Figure 4 (a and b). Effects of (a) aqueous extract and (b) ethanolic extracts of  A. heterophyllus on Drosophila 

melanogaster survival (longevity). 

 

There was a significant (P<0.05) increase in the 

levels of H2O2 produced among AEAH-treated 

flies (Figure 5a) with a significant (P<0.05) 

decrease in the levels of nitrite produced (Fig. 5b) 

in the highest doses (0.5 and 1.0 mg/kg) compared 

to the control flies. However, no significant 

(P>0.05) difference was observed in the total thiol 

levels except for 0.5 mg/kg AEAH-treated group 

(Figure 5c). Also, a similar effect was noticeable 

in GSH levels except for 0.5 mg/kg AEAH-treated 

Figure 3. Effect of 30% and 60% sucrose treatments 

on locomotor (climbing) activity in Drosophila 

elanogaster. Values are expressed as mean±SE (n=50). 

*indicates a significant (P<0.05) difference vs. control. 
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group where a significant (P<0.05) increase was 

noticeable in GSH level compared to normal flies 

(Figure 5d). However, a significant (P<0.05) 

decrease was observed in GST (Figure 5e) and 

CAT (Figure 5f) activities among 0.1 and 0.5 

mg/kg AEAH-treated groups. There was a 

significant (P<0.05) increase among 1.0 mg/kg 

AEAH-treated groups compared to normal flies.  
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Figure 5 (a-f). Effect of the aqueous extract of A. heterophyllus on oxidative stress  

biomarkers and antioxidant parameters of Drosophila melanogaster. 

Values are expressed as mean±SE (n=50). Alphabets (a and b) indicate a significant (P<0.05) difference vs. control. 

 

Effect of ethanolic extract of A. heterophyllus on 

oxidative stress and antioxidant parameters in D. 

melanogaster: Figure 6 (a-f) represents the effects 

of EEAH on oxidative stress markers and 

antioxidant parameters of D. melanogaster. There 

was no significant (P>0.05) difference in the levels 

of H2O2 produced among different doses of EEAH-

treated flies compared to control (Figure 6a). 

However, a significant (P<0.05) decrease was 

observed in nitrite levels of 0.1 and 0.5 mg/kg 

EEAH-treated flies with a significant increase 

(P<0.05) in 1.0 mg/kg EEAH-treated group 

compared to control flies (Figure 6b). Also, a 

significant (P<0.05) increase was observed in total 

thiol level of 0.1 mg/kg EEAH-treated flies, while 

no significant (P>0.05) difference was noticeable 
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among 0.5 and 1.0 mg/kg EEAH-treated flies 

compared to normal flies (Figure 6c). Similarly, a 

significant (P<0.05) increase was observed in GSH 

level of 0.5 mg/kg EEAH-treated flies with no 

significant (P>0.05) difference among 0.1 and 1.0 

mg/kg EEAH-treated flies (Figure 6d). 

Furthermore, dose-independent effects were 

noticeable in activities of GST (Figure 6e) and 

CAT (Figure 6f) among EEAH-treated flies. 

However, 0.5 and 0.1 mg/kg EEAH caused a 

significant (P<0.05) increase in GST and CAT 

activities compared to normal flies.  
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Figure 6 (a-f). Effect of the ethanolic extract of A. heterophyllus on oxidative stress biomarkers and  

antioxidant parameters of Drosophila melanogaster. 
Values are expressed as mean±SE (n=50). Alphabets (a and b) indicate significant (P< 0.05) difference vs. control. 

 

Effect of aqueous and ethanolic extracts of A. 

heterophyllus on locomotor (climbing) activity of 

D. melanogaster: Figure 7 shows the effect of (a) 

different doses of AEAH-treated and (b) EEAH-

treated diets on locomotor (climbing) activity of D. 

melanogaster. There was no significant (P>0.05) 

difference in locomotor activities of different doses 

of AEAH-treated flies compared to the control. 

Similarly, as shown in Figure 7b, there was no 

significant (P>0.05) difference in locomotor 

activities of the different doses of EEAH-treated 

flies compared to the control.  
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Figure 7. Effect of the (a) aqueous and (b) of ethanolic extract A. heterophyllus on locomotor  

activity of Drosophila melanogaster. 

Values are expressed as means±SE (n=50). *Indicates a significant (P< 0.05) difference vs. control. 

 

Effect of aqueous and ethanolic extracts of  

A. heterophyllus on high sucrose diet treated  

D. melanogaster: Figure 8 (a-g) presents AEAH 

and EEAH effects on high sucrose diet-induced 

hyperglycemia in D. melanogaster. There was a 

significant (P<0.05) increase in glucose level of 

sucrose-treated group compared to the control flies 

(Figure 8a). However, treatment with 0.1 mg/kg 

AEAH and EEAH caused a significant (P<0.05) 

decrease in glucose concentrations compared to 

sucrose-induced hyperglycemic flies and normal 

flies in the control group. Also, a significant 

(P<0.05) decrease was seen in oxidative stress 

makers such as H2O2 and nitrite levels of sucrose-

induced hyperglycaemic flies treated with 0.1 mg/kg 

AEAH and EEAH compared to untreated sucrose-

induced hyperglycaemic flies and normal control 

(Figure 8b and c). Similarly, a significant (P<0.05) 

increase was observed in total thiol and GSH levels 

(Figure 8d and e) as well as GST and CAT 

activities of sucrose-induced hyperglycaemic flies 

treated with 0.1 mg/kg AEAH and EEAH compared 

to untreated sucrose-induced hyperglycaemic flies 

and normal control (Figure 8f and g). This 

observation was compared between the extracts; 

however, there was no significant (P>0.05) 

difference in the effects of 0.1 mg/kg AEAH and 0.1 

mg/kg EEAH on sucrose-induced hyperglycaemic 

flies. 

Discussion 

Recent studies have indicated that medicinal 

plants have long served as a vital resource for 

managing various metabolic disorders in humans 

(Grover et al., 2002). Their therapeutic potential 

arises from a rich array of phytonutrients, including 

flavonoids, phenolics, and saponins (Saleem et al., 

2022). A. heterophyllus is a medicinal plant with 

reported anti-diabetic activities (Adediwura and 

Kio, 2009, Gobinath et al., 2022). D. melanogaster 

is often used in studying various biological 

processes, including aging and longevity as well as 

nutritional intervention studies, as it exhibits many 

similarities with mammalian species. Therefore, the 

current investigation aimed to explore the 

antihyperglycemic effects of both aqueous and 

ethanolic extracts of this plant on a high sucrose 

diet-induced hyperglycemic model using 

Drosophila melanogaster. 
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Figure 8 (a-g). Effects of the aqueous and ethanolic extracts of  

A. heterophyllus on high-sucrose diet-induced hyperglycemia in Drosophila melanogaster. 

Values are expressed as mean±SE (n=50). Alphabets (a, b & c) indicate a  

significant (P< 0.05) difference vs. control. 
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According to a recent report, standardized diets 

are essential for the survival, longevity, and 

reproductive activity of D. melanogaster 

(Eickelberg et al., 2022). However, in the current 

study (Figure 1), flies treated with a high sucrose 

diet (HSD) exhibited an increased mortality rate, 

accompanied by high glucose levels and markers of 

oxidative stress (H2O2 and nitrite levels) (Figure 2a, 

b, and c), with a concomitant depletion of cellular 

antioxidant systems (Figure 2d, e, f, and g). These 

findings signal hyperglycemic phenotype traits 

induced by high sucrose diet exposure in flies, 

which could possibly have resulted from insulin 

signalling dysregulation (Morris et al., 2012, 

Palanker Musselman et al., 2011). However, this 

uncontrollable condition possibly resulted into 

cellular stress and toxicity, affecting survival and 

longevity of flies, an observation that is consistent 

with the report of Bhagwat et al. (Bhagwat et al., 

2008).  

HSD-exposed flies demonstrated a locomotion 

deficit, as evidenced by negative geotaxis assays 

(Figure 3). Reports have indicated that negative 

geotaxis reflects a combination of behavioural, 

neurological, and reproductive changes in D. 

melanogaster (Lushchak et al., 2011). Similarly, a 

reduction in locomotor activity according to Omale 

et al. could possibly reflect an impairment that 

parallels insulin-resistant in diabetes, where 

peripheral neuropathy leads to loss of coordination 

and reflexes (Omale et al., 2020, Usai et al., 2022). 

However, our observation following the treatment 

with diet-based extracts indicated that different 

doses of AEAH and EEAH fractions (Figures 4-8) 

are capable of simultaneously enhancing lifespan, 

mobility and reversing HSD-induced cellular redox 

imbalance and toxicity in D. melanogaster 

(Mohammed et al., 2017). This finding supports 

the claims that medicinal plants play an important 

role in the management of several metabolic-

related syndromes, as they are reservoir of 

compounds capable of mitigating the damaging 

effects of ROS (Biworo et al., 2015, Omale et al., 

2020). Experimented extracts also showed a degree 

of safety similar to previous reports by Ogbonnia 

et al. and Ogunbolude et al. (Ogbonnia et al., 

2008, Ogunbolude et al., 2009). 

This study indicated the possible toxic doses of 

the extracts of Artocarpus heterophyllus (Jackfruit) 

leaf and as well as their ameliorating potentials in 

high sucrose-induced diabetic phenotype in 

Drosophila melanogaster. However, the study did 

not identify or characterize the specific bioactive 

compounds responsible for the observed 

antihyperglycemic and antioxidant effects. Also, it 

did not examine the possible effect using human 

subject and no clinical trials were conducted. 

Conclusion 

Based on the findings of this study, HSDs diets 

caused diabetic phenotypic reactions in D. 

melanogaster that possibly corroborate insulin 

signalling derangement and a redox imbalance 

state. However, the aqueous and ethanolic extracts 

of A. heterophyllus leaves showed significant 

reductions in glucose levels, neurological 

improvements, and cellular protection, which are 

crucial for managing metabolic-related syndromes 

in D. melanogaster. Similarly, results of this study 

further highlight the value of D. melanogaster and 

high sucrose diets as effective instruments for 

researching metabolic diseases and possible 

treatments. Overall, it could be inferred that AEAH 

and EEAH possess antidiabetic potential. 
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